Bostrom (2014) worries about an AI “treacherous turn”:
…one idea for how to ensure superintelligence safety… is that we validate the safety of a superintelligent AI empirically by observing its behavior while it is in a controlled, limited environment (a “sandbox”) and that we only let the AI out of the box if we see it behaving in a friendly, cooperative, responsible manner. The flaw in this idea is that behaving nicely while in the box is a convergent instrumental goal for friendly and unfriendly AIs alike. An unfriendly AI of sufficient intelligence realizes that its unfriendly final goals will be best realized if it behaves in a friendly manner initially, so that it will be let out of the box. It will only start behaving in a way that reveals its unfriendly nature when it no longer matters whether we find out; that is, when the AI is strong enough that human opposition is ineffectual.
Some people have told me they think this is unrealistic, apparently even for a machine superintelligence far more capable than any current AI system. But I learned today that this has already happened at least once before — twenty years ago!
As part of a project studying the evolution of (simulated) organisms, computer scientist Charles Ofria wanted to limit the replication rate of a digital organism. So, he programmed the system to pause after each mutation, measure the mutant’s replication rate in an isolated test environment, and delete the mutant if it replicated faster than its parent. However, the organisms evolved to recognize when they were in the test environment and “play dead” (pause replication) so they would not be eliminated and instead be kept in the population where they could continue to replicate outside the test environment. Once he discovered this, Ofria randomized the inputs of the test environment so that it couldn’t be so easily detected, but the organisms evolved a new strategy, to probabilistically perform tasks that would accelerate their replication, thus slipping through the test environment some percentage of the time and continuing to accelerate their replication thereafter.